Technology Developments to Enable On-Board Hydrogen Storage

Advanced Clean Cars Symposium: The Road Ahead

Diamond Bar, California

September 27, 2016

Ned T. Stetson, Ph.D.

Hydrogen Storage Program Manager Fuel Cell Technologies Office U.S. Department of Energy

Hydrogen Storage Technology Development: Parallel paths to address near and long-term needs

Technology Focus Barriers and R&D Focus Dual approach Lower Cost Carbon Fiber •Improved Composites 700 bar •Conformable designs Compressed Lower Cost BOP Near-Term Approach System Engineering Advanced Insulation Cold / Cryo- Improved Dormancy Compressed Composite Development Hydrogen Storage •Higher Material Capacity Ex. NaAlH₄ System Cost Metal Hydrides •Fill Time Onboard Efficiency Longer-Term Approach •Higher Material Capacity System Cost Sorbents Dormancy WTP Efficiency Ex. NH₃BH₃ •Lower Cost Off-board Regen Chemical H₂ Storage System Cost Gravimetric Density

Near-term – address cost and performance of 700 bar H₂ storage; Long-term – develop advanced technologies with potential to meet all targets

Current status for H₂ Storage on Fuel Cell Vehicles

H₂ fuel cell electric vehicles

- Models available for lease or sale in certain geographic areas around the world
- 700 bar (70 MPa; 10,000 psi) onboard storage
- Type IV composite overwrapped pressure vessels
- Driving range: 265-312 miles*
- **700 bar refueling infrastructure** being deployed in certain geographic areas
- Fill times as low as 3 minutes

* Ranges based on EPA estimates for 2016 model year vehicles: https://www.fueleconomy.gov/feg/fcv_sbs.shtml

H₂ fuel cell forklifts/pallet jacks

- 350 bar onboard storage
- Type I/III/IV pressure vessels
- Performance benefits over battery forklifts
- 350 bar refueling infrastructure deployed, but at a premium over battery charging

Initial commercialization occurring with compressed H₂ storage

Examples of On-Road Demonstrations

FCEV	Storage Technology	Chassis Style	Fuel Economy in miles / kg H ₂ (City / Hwy)	Driving Range (miles)	Year Reported
Ford Focus	350 bar	Compact Car	48/53	200	2006
Nissan X-trail	350 bar	Compact SUV	no ref	229	2006
Chevrolet Equinox	700 bar	Compact SUV	47	199	2007
Kia Borrego	700 bar	Full-size SUV	60	470	2010
Toyota Highlander FCHV-adv	700 bar	Full-size SUV	58	350	2011
Honda Clarity	350 bar	Mid-size Car	60/60	240	2012
Mercedes-Benz F-Cell	700 bar	Subcompact Car	52/53	190	2012
Hyundai Tucson	700 bar	Compact SUV	50	265	2014
Toyota Mirai	700 bar	Subcompact Car	66	312	2015

- -

Ford Focus

Chevrolet Equinox

Photo Credit: GM

Photo Credit: Hyundai Motor **Hyundai Tucson**

Toyota Mirai

Photo Credit: Toyota Motor

Photo Credit: Honda Motor

Honda Clarity

Mercedes-Benz F-Cell

Photo Credit: Daimler AG

Compressed gas storage delivers acceptable driving ranges for <u>some</u> vehicle platforms

700 Bar H₂ Storage System Performance

Projected Against DOE 2020 Targets

Projected Against DOE Ultimate Full Fleet Targets

Baseline 700 Bar System Configuration

Single-tank configuration is used in cost and performance models

G. Ordaz, C. Houchins, and T. Hua, "Onboard Type IV Compressed Hydrogen Storage System – Cost and Performance Status 2015," DOE Hydrogen and Fuel Cells Program Record #15013, Nov. 25, 2015.

Composite Overwrapped Pressure Vessels

Credit: Stako, 2015

TPRD = Thermally Activated Pressure Relief Device

Credit: Process Modeling Group, Nuclear Engineering Division. Argonne National Laboratory (ANL)

Cost targets cannot be met without significant reduction in high-strength carbon fiber composite costs – Where can the costs be reduced?

Lower Cost Precursors for Carbon Fiber

Commercial Textile (PAN/MA) Precursors (Oak Ridge NL) – Project completed

- Precursors account for ≥55% of cost of carbon fibers
- Textile PAN fibers ~25% lower cost than conventional PAN fiber precursors
- Potential fast-track, drop-in replacement precursor
- Projected CF costs of \$23.43/kg, savings of ~\$5/kg compared to Toray T-700S

G. Ordaz, C. Houchins, and T. Hua, "Onboard Type IV Compressed Hydrogen Storage System – Cost and Performance Status 2015," DOE Hydrogen and Fuel Cells Program Record #15013, Nov. 25, 2015.

Melt Processable PAN Precursors (Oak Ridge NL)

- Target: >25% reduction in costs of manufacturing of carbon fiber
- Cost reduction achieved through lower capital costs and lower processing costs vs conventional wet spinning processes
- Alternative melt processable formulations to be developed and demonstrated
- Feasibility demonstrated, scale-up in process

Component Integration

Analysis Year	BOP Assumptions/Changes	BOP Cost (2007\$/kWh)	
2013 (DOE Record)	Majority of vendor quotations, limited by product availability	\$4.98/kWh	
2014	DFMA® analysis of integrated in-tank valve and pressure regulator quotation update	\$4.37/kWh	
2015 (DOE Record)	Integrated pressure regulator block will reduce number of fittings (translates to other H ₂ storage systems)	\$3.64/kWh	

G. Ordaz, C. Houchins, and T. Hua, "Onboard Type IV Compressed Hydrogen Storage System – Cost and Performance Status 2015," DOE Hydrogen and Fuel Cells Program Record #15013, Nov. 25, 2015.

Alternative Materials

Combined empirical and computational approach to identify alternative materials for use in hydrogen service (SNL)

- Fatigue properties versus reduction in tensile strength
- Computationally determine stacking fault energy and strategies to control it

Material	Raw Material Cost	Yield Strength (MPa)	Weight Savings (%)	Relative Material Cost (%)
316L (A)	1.0	170	0	100
316L (CW)	1.2	570	70	36
21Cr-6Ni- 9Mn (XM-11)	0.8	540	69	33
304L (CW)	1.0	540	68	26
Nitronic 60	1.0	415	59	48
SCF 260	1.1	965	82	23

Fuel Cell Technologies Office | 12

Current FCEVs use dual tank configurations

Fuel Cell Technologies Office | 13

Honda Clarity

Hyundai Tucson Fuel Cell

Photo Credit: Hyundai Motor

Photo Credit: Honda Motor

Toyota Mirai

Photo Credit: Toyota Motor

700 Bar System Configuration

Dual-tank configurations are currently used onboard all commercial FCEVs today Significant increase in cost due to redundancies in balance of plant components

Based on 5.6 kg usable H_2 capacity systems (5.6 or 2.8 kg per tank), Type IV COPVs, L/D ratio of 3.0, 700 bar operation, safety factor 2.25

B. James, A. Spisak, Strategic Analysis, presented to the US. DRIVE H₂ Storage Technical Team, Nov. 15, 2012

Balance of plant accounts for bulk of cost increase in multi-tank configurations

Projected Against DOE Ultimate Full Fleet Targets

Conformable tanks

Fuel Cell Technologies Office | 17

Comparison of H₂ Densities at 350 and 700 Bar

Hydrogen Storage Technology Development: Parallel paths to address near and long-term needs

Near-term – address cost and performance of 70 MPa H₂ storage; Long-term – develop advanced technologies with potential to meet all targets

Higher H₂ densities are achievable through use of lower temperatures

Lower Temperatures

lead to...

Higher Energy Densities

Source U.S. Department of Energy

Sub-ambient compressed H₂ storage

Source: Lawrence Livermore National Laboratory

High-performance insulation used to extend dormancy and reduce pressure build up and venting of H₂ due to heat leakage

Examples of sub-ambient storage efforts

Organization	Pressure	Temperature	H ₂ Sys. Density	Application
BMW ¹	300 bar	~40 – 80 K	≥ 30 g/L	LDVs
LLNL ²	700 bar	~40 – 80 K	50 g/L	LDVs
PNNL ³	500 bar	~200 K	25 g/L	LDVs
ANL ⁴	tbd	~40 – 80 K	tbd	Buses
HSECoE 5	≤ 100 bar	80 -160 K	21 g/L	LDVs, sorbents

- 1: based on K. Kunze, O. Kircher, BMW Group, presented at the Cryogenic Cluster Day, Oxford, September 28, 2012. https://www.stfc.ac.uk/stfc/cache/file/F45B669C-73BF-495B-B843DCDF50E8B5A5.pdf
- 2: based on S. Aceves, G. Petitpas, V. Switzer, LLNL, presented at the Hydrogen and Fuel Cell Technologies Annual Merit Review and Peer Evaluation Meeting, June 17, 2014. https://www.hydrogen.energy.gov/pdfs/review14/st111_aceves_2014_o.pdf
- 3: based on D. Gotthold, PNNL, presented at the Hydrogen and Fuel Cell Technologies Annual Merit Review and Peer Evaluation Meeting, June 9, 2016. https://www.hydrogen.energy.gov/pdfs/review16/st101_gotthold_2016_o.pdf
- 4: based on personal communications about R&D being carried out by R. Ahluwalia, ANL, 2016.
- 5: based on D. Anton, SRNL/HSECoE, presented at the Hydrogen and Fuel Cell Technologies Annual Merit Review and Peer Evaluation Meeting, June 9, 2016. https://www.hydrogen.energy.gov/pdfs/review16/st004_anton_2016_o.pdf

A range of pressures and temperatures are being investigated and have not yet been optimized

Long Term Strategy-H₂ Materials Based Storage: Potential for Higher H₂ Densities

Fuel Cell Technologies Office | 23

Physical Storage

700 bar Gen 2 vehicles 40g/L

Theoretical limitations prevent 700 bar from meeting all onboard targets

700 Bar H2 Storage System Performance

Projected Against DOE 2020 Targets

Materials Storage

Reference

interstial hydrides complex hydrides

~100-150 g H₂/L

~70-150 g H₂/L

~70-150 g H₂/L

≤ 70 g H₂/L

sorbents

water $111 g H_{2}/L$

Bonding type in materials

Fuel Cell Technologies Office | 24

Fuel Cell Components (outside HSECoE scope)

Fuel Cell Technologies Office | 25

Material-based systems must be able to exchange heat due to the endo/exothermic nature of the hydrogen sorption processes

Strategies for increasing energy density

Method	H ₂ Density	Advantage	Disadvantage
compression	40 g/L (700 bar)	simple, mature	low energy density, cost
liquefaction	70 g/L (20 K)	high density, low-pressure	energy penalty, cryogenic, dormancy
cold/cryo- compressed	up to ~90 g/L (700 bar, 40 K)	high density, Simple, fast refueling	cryogenic, high- pressure, dormancy, energy penalty
Materials-based			
metal hydrides	up to 150 g/L	high density, low-pressure	weight, cost, complexity
sorbents	up to 70 g/L (?)	high density, low-pressure, kinetics	cryogenic, complexity, dormancy
liquid carriers	up to ~120 g/L (?)	high density, low-pressure	regeneration efficiency, two-way, cost

There is no perfect solution

Fuel Cell Technologies Office | 27

		Storage Options					
		700 Bar	Cold- compressed	Cryo- compressed	Cryo- sorbent	Metal Hydride	Chemical Hydrogen
	Liquid H ₂	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
tions	Low Pressure (< 200 bar)	✓	✓		✓	✓	
Delivery Options	High Pressure (> 200 bar)	✓	✓		✓	\checkmark	
	Pipeline	✓	✓		√	✓	
	Chemical Processing						✓
	Forecourt Implications	Pre- cooling needed (down to -40°C)	Refrigeration required (down to 150 K)	Supercritical H ₂ needed (<< 150 K)	Liq H ₂ or liq N ₂ needed (down to 80 K) w/ recirculation	Heat rejection at forecourt maybe needed	Must recycle spent fuel offboard

Decisions on H₂ delivery method and onboard storage technology can create limitations on the available choice for the other

Thank you

Dr. Ned Stetson

Program Manager, H₂ Storage Fuel Cell Technologies Office ned.stetson@ee.doe.gov